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1. " Introduction. Let C = ¢([-r,0],E') be the space of continuous

functions mapping the interval [-r;O] into an n-dimensional real or

complex vector space E . For any ¢ in ¢, define || = SUP L a<h

|o(6)| where |x| 4is the norm of a vector x in B, If x is a

continuous function mapping any interval [a-r, a+A) into En, A>0
and t is a given element of [a, a+A), define x, in C by xt(e) =
6 <0. If F is a function taking R X C into E, R =

1A

x(t+0), -r
(~,0), then a functional differential equation is defined by the rela-

tion

(1) x(t) = F(t,xt)
where %(t) denotes the right hand derivative with respect to t. A
solution of (1) with initial value @ at o is a continuous function
x = x(0,9) defined on [o-r, o+A), A >0 such that X, =¢ and x
satisfies (1) for t in [0, o+A). It is well known that F(t,) con-
tinuous in t,9 and locally Lipschitzian in ¢ implies the existence and
uniqueness of a solution of (1) through (o,p) for ény' 6,@. Further-
more, the solution =x(o,p)(t) is continuous in (o,p,t) in its domain of
definition, It will be assumed in the sequel that P is smooth enough
toiensure this latter property and, in fact, F(t,p) is continuous in
t,0 and has a continuous first derivative with respect to .

If F(t,9) = £(¢®) is independent of +t, system (1) is referred

to as an autonomous functional differential equation



(29 #(t) = £(x,).

In this case, it is no restriction to assume that o = 0 and write the
solution as x(®). An orbit 07(p) of (2) through ¢ is defined in C
and not in E as O+(¢) = Utéoxt(@)' The gqualitative theory of auto-
nomous functional differential equations is concerned with the study of
the geometrical properties of the orbits of (2). We briefly outline
below sdme of the results that have been obltained along this line for
equilibrium points and periodic orbits. |

An equilibrium or critical point of‘(2) is a constant function
which satisfies (2). Without any loss in generality, we may assume this
equilibrium point is x = O; that is, £(0) = 0. The linear variational

equation associated with x = 0 is

(3) y(t) = Lyy)

where I(@) is the derivative of f at O evaluated at ®. The map-
ping L: C SE" is a continuous linear operator and therefore has the

form

(¥ L(9) = [S1dn(6)1e(6)

where 1 1s an n X n matrix with elements of bounded variation. The

characteristic equation for (3) is



(5) det AA) =0, AN =M - Igewdn(ej.

solution of (5) and elementary if no solution of (5) has zero real part.

If no solution of (5) has zero real part, then.the space C
can be decomposed as the direct sum of two linear subspaces, C = § 6 U,
which are invariant under the mapping induced by the solutions of (3)
such that the solutions of (3) are decaying exponentials on S ‘and grow-
ingrexponentials on U. The set U is finite dimensional, The sets
8 and U are referred to as the stable and unstable manifolds, re-
spectively, of (3). The set 8 “may also be characterized as the set
of initial values of those solutions of (3) which remain in a neighbor-
hood of zero for all © 2z 0. The set U 1is chafacterized in the same
manner except for t = 0.

The latter characterization of - S and U may also be used
to define the stable and unstable manifolds & and lé. for the solution
x =0 of (2). With this definition, it was shown by Hale and Perello

[{1] that an elementary critical point p of &2) exhibits in C a saddle

| point structure in the sense that the stable and unstable manifolds of
p are locally homeomorphic to the stable and unstable manifolds of
the linear variational equation.

Recently, Oliva [2] has formulated the concept of functional
differential equations on a compact manifold. He also has shown‘that
the family of all f which have a continuods bounded first derivative

such that system (2) has only elementary (or nondegenerate) critical



points is open and dense in the Cl—topology of all f having a con-
tinuous bounded first derivative.
If system (2) has a nonconstant w-periodic solution p, then

the linear variatiocnal equation relative to p 1is

2(t) = L(t,zt)

(6)
L(t,0) = [o1d,n(t,0) Jo(e)

where I(t+w,0) = L(t,p) is the derivative of f at p evaluated

at @. To the linear equation (6), one can associate a family of con-

tinuous linear operators T(t,0), t = o, taking C into C by defining
() T(t,0)0 = 7,(a,9)

where z(o,p) is the solution of (6) with initial value ¢ at d.
Stokes [3] has shown that the spectrum of the operator T(oww,0) con-

sists only of point spectrum (except for {0}), is independent of o

istic multipliers of (7).

Since p 1is a nonconstant o-periodie solution of (2),
“the derivative D is a nontrivial o-periodic solution of (6) and
therefore one of the characteristic multipliers of (6) is one. If
is a generator for the generalized eigenspace of the multiplier

Py

one of T(o+w,0), then ba is a generator for the generalized eigen-



space of the multiplier one of 1(a+w,a) for any a. 1In such a case,
we say the orbit TI' generated by the w-periodic solution p is non-
degenerate, If I' is nondegenerate and also no other multipliers of
degenerate and elementary periodic orbits is not complete at the pres-
ent time although a few results are available, For example, one can
easily prove that a nondegenerate w-periodic orbit T of (2) is iso-
lated in the sense that there is a neighborhood V of I' such that VI
contains no w-periodic orbits.

Halanay [4] has proved the following more complicated state-

ments If the differential difference equation
(8) x(t) = glx(t),x(t-r))

has a nondegenerate periodic orbit TI', then there is an eo >0 such

that the equation

(9) %(%) = h(x(t),x(t-r),¢)

has a noﬁdegenerate periodic orbit I'e for |¢ = € aﬁd Iy = r
provided that h(x,y,e) is continuous in its argumeﬁts, continuously
differentiable in x and y, and h(x,y,0) = g(x,¥).

We have obtained an extension of the result of Halanay

to a rather general class of functional differential eqﬁatibns. Suppose



x: R »E' is a continuous function, t = (lfB)T, B>-1 and x(t) =

y(t). Then

differentiable function x: R -E , the function f(x.) = £y, o)
2
considered as a function of B is continuously differentiable. Any f

of the form

£(0) = F([[an;(6)1e,(9(6)), ..., an,(6)1e,(2(6)))

where F and the gj are continuously differentiable vector functions
and the nj are matrices of bounded variation is of class (8).

The following result is true: Suppose G(p,€) is of class
(8), is continuous in @,e, continﬁously differentiable in @ and
G(9,0) = £f(9). If system (2) has a nondegenerate periodic orbit T,

then there is an 5 > 0 such that the system

(10) x(t) = G(x_t,€)

A

has a nondegenerate periodic orbit T_ for | ¢l e, and T =T,
The ideas in the proof of the above theorem are as follows.

To obtain a periodic solution of (10) which for € = O coincides with the



w-periodic solution of (10), let t by (1+8)7, x(t) = y(t), to yield

the equation
. dy _
(11) T = oy g,0).

For a fixed ¢ and £ sufficiently small, one shows there are a scalar
function B(e,B) and an w-periodic funetion p*(T,e,B), p*¥(T7,0,0) =
p(7), satisfying
= 6y, g9 - Be,B)B(T)

R .
The hypotheses of the theorem imply that B(0,0) =0 and JB(e,B)/PB £ 0O
for € =0, B = 0. The implicit function theorem implies the existence
of a B(¢), B(O) = 0, such that B(e,B(¢)) = 0 and, therefore, the
existence of a periodic solution of (10).

The discussion of an elementary periodic orbit is much more
difficult., To the auﬁhor's knowledge, the first result dealing with
the stability properties of a periodic orbit of (2) is due to Stokes
[5]. He proved the following theorem: If TI' is nondegenerate and all
characteristic multipliers of (6) except one have modulus less than one,
then there ié a neighborhood V of I' such that any solution of (2)
with initial value in V .must approach I' exponentially as t — o and
with asymptotic phase; that is, there are positive cons#ants K,a such

that for any @ 1in V, there is a constant wiﬁh



“Xt+71¢)-pt“ £Ke 7, tzo0.

For the case when some multipliers have modulus greater than
one, some further information is also available. Suppose 1 1is a given
“constant and consider the linear variational equation for the solutions
of (2) relative to p{t+y). There exist two subspaces of €, S(y) and
U(v), such that any solution of the linear equation which —0 as t —w
(t - -«) must have its initial value at t =0 on 8(y) (U(y)). There
aré sets SS(Y), UB(Y? aésociated with the complete variational equation
which are locally homeomorphic to 8(y) and U(y) such that any solu-
tion which remains in a certaip &-neighborhood of zero for t = 0

= 0) must have its initial value at t =0 on SS(Y) (Ug(7)). A

set & is the stable manifold of a periodiec orbit I' relative to a

neighborhood V of T if the orbit I' is positively stable relative
to initial values oﬁ S and any solution which remains in V for t 2 0
must have its initial value on & and approach T' as t -, The un-
stable manifold is defined analogously for + = 0. We have been able to
prove that the sets & = OSY< (p +38(yj) and : U = U0S7< (p +U6(7?)
are stable and unstable manifolds, respectively, of T\ Flnally, the

set U is either homeomorphic to UO(S) X (a ecircle) or a generalized
Mobius band with cross section UO(S). It has not been shown at this
time that S’ is either homeomorphic to SO(B) X (a circle) or a

generalized Mobius band with eross section SO(S).
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